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Overview 

 Metamodels 

 

 Gaussian Process background 

 

 Gaussian Process formulation 

 

 Examples 

 

 Use of Gaussian Processes within other methods (e.g. 
optimization) 
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Metamodels 

 Metamodels:  also called surrogate, response surface model, 
or emulator.  

 Typically constructed over a small number of simulation 
model runs (“code runs”) 

 The simulation is very costly to run, we can only afford a 
limited number of runs, often dozens to a few hundred 

 The code runs provide the training data (e.g. sets of input 
parameters and corresponding response values) 

 The metamodel is constructed to provide a fast, cheap 
function evaluation for the purposes of uncertainty 
quantification, sensitivity analysis, and optimization. 

 Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments 
in multidisciplinary design optimization: A review of how far we have come or not. In Proceedings of the 
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference), Victoria, British Columbia, 
Canada, September 2008. AIAA Paper 2008-5802. 
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Metamodels 

 Taylor series approximations 

 Linear regression models 

 Neural networks 

 Moving least squares 

 Radial Basis Functions 

 Multivariate Adaptive Regression Splines (MARS) 

 Gaussian process models 

 Polynomial Chaos expansions 

 Multi-fidelity models 

 Reduced-order models 
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Gaussian Processes 

 Why are GPs popular emulators of computer models?  
 They allow modeling of fairly complicated functional forms 

 They do not just offer a prediction at a new point but an estimate of 
the uncertainty in that prediction 

 

 Classic references:  
 Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis 

of computer experiments. Statistical Science, 4(4):409–435, 1989. 

 Santner, T., B. Williams, and W. Notz. The Design and Analysis of 
Computer Experiments. New York, NY: Springer, 2003. 

 Rasmussen, C.E. and C.K.I. Williams.  Gaussian Processes for Machine 
Learning.  MIT Press, 2006.  e-book:  

 http://www.gaussianprocess.org/gpml/chapters/ 
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Gaussian Process 

 A stochastic process is a collection of random variables 
{y(x) | xX} indexed by a set X in d, where d is the 
number of inputs.  

 A Gaussian process is a stochastic process for which any 
finite set of y-variables has a joint multivariate Gaussian 
distribution.  That is, the joint probability distribution for 
every finite subset of variables y(x1), ..y(xk) is multi-variate 
normal. 

 A GP is fully specified by its mean function (x) = E[y(x)] 
and its covariance function C(x, x′).  



What does this mean?  

 Start with a set of runs of a computer code:  at each sample xi 
we have output yi(xi).  

 The output at a new input value, xnew, is uncertain.  

 This is what a GP will predict.  

 Related to regression.  

 Related to random functions.   From our set of samples, we 
have a “deterministic” function that is a set of points {x, y(x)} 
or {x, f(x)}.  Instead of f(x), if we use the outcome of a random 
draw from some joint distribution of random variables {Z(x1), 
… Z(xn)}, we get a realization of a random function.  

 This is a stochastic process (e.g. generate many draws and get 
many functions).  



How do we simulate realizations  
of a random function?  

 Start with {Z(x1), … Z(xn)} from a multivariate normal distribution 
with mean 0 and covariance matrix C=Cov[Z(xi), Z(xj)].  

 To simulate a random draw:  

 Generate n standard normal(0,1) random variables, S. 

 Perform a Cholesky decomposition C= LLt.  

 Define Z = LS.  

 Plot the points {xi, Zi = Z(xi)}  

 Connect the dots 



Example covariance function in 1-D 

 Cov[Z(xi), Z(xj)] = exp(-|xi - xj|
2) 

 



Gaussian Process 

 We have the capability to generate random functions  

 We can add a mean function (typically a constant or a simple 
polynomial regression)  

 We can multiply the covariance by a constant to scale the 
vertical axis. 

 Now, we can vary  to get a certain amount of “wiggle” in the 
random function (smaller  leads to less wiggle). 

 NOW:  we want to constrain these random functions to be 
consistent with the data points we have 

 We can either take a Bayesian approach or a maximum 
likelihood (MLE) approach to estimate the parameters 
governing the Gaussian process 

 Start with a MLE approach 



Gaussian Process 

 Typical formulation: a Gaussian process is defined by its mean 
and covariance function.  We assume:  

E 𝑦 𝒙 = 𝑓 𝒙 𝑇𝜷             Mean 

Cov 𝑦 𝒙 , 𝑦 𝒙′ = σ2𝑟(𝒙, 𝒙′)  Covariance 

𝒀~𝑁(𝑓 𝑿 𝑇𝜷, σ2𝑹)          Multivariate Normal 

 A few notes:  
 𝒙 is one set of inputs of dimension d.  We have N samples, 𝒙i, for 

i=1…N.  Each 𝒙i = {𝑥i1 , 𝑥i2, …. ,𝑥id}.  X denotes the (d*N) set of all 
samples, and 𝜷 is the d*1 vector of regression coefficients. It may just 
be a constant 𝛽.   

 It is more typical to write the covariance as the product of a scaling 
factor σ2 times the correlation 𝑟 𝒙, 𝒙′ .   

 The full N ∗ N correlation matrix between all points is 𝑹 

 𝒀 is the (N*1) vector of response values. 

 



Gaussian Process 

 NOW:   what is the prediction for a new point?  

 

E 𝑦 𝒙∗ |𝒀 = 𝑓 𝒙∗ 𝑇𝜷 + 𝑟 𝒙∗ 𝑇𝐑−1[𝐘 − 𝐅𝜷] 

Var[𝑦 𝒙∗ 𝒀 = σ2(1 − 𝑟 𝒙∗ 𝑇𝐑−1𝑟 𝒙∗ )
 

   

 

 The correlation matrix for the training points is 𝑹. 

 𝑟 𝒙∗  is the vector of correlations between the new point 𝒙∗ 
and the existing N points.  It is of size N*1.   

 F is the set of basis functions for the original full data set X.  

 These are the conditional predictions (conditional on the 
data).  

 



What does this look like?  
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staffwww.dcs.shef.ac.uk 

Note the reduction in variance as you have more data  

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/


What does this look like?  
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This plot 

shows mean 

and variance 

plus random 

realizations 



Properties of the GP approximation 
 The mean prediction interpolates the data. 

 

E 𝑦 𝒙∗ |𝒀 = 𝑓 𝒙∗ 𝑇𝜷 + 𝑟 𝒙∗ 𝑇𝐑−1[𝐘 − 𝐅𝜷] 
 

 The mean prediction is a linear combination of basis 
functions 

 The predicted variance increases the further away the 
new point is from existing points. 

 
Var[𝑦 𝒙∗ 𝒀 = σ2(1 − 𝑟 𝒙∗ 𝑇𝐑−1𝑟 𝒙∗ )

 
 



Correlation Function 
 Want to capture the idea that nearby inputs have highly correlated 

outputs. 

 The correlation in some dimensions may be more important than 
others…different “length-scales” in each dimension 

 Common correlation functions include 

Power-exponential (or squared exponential):   

 Typically the exponent pj is 2, which gives smooth realizations. If pj is 
1, you get much rougher realizations.  

 Larger values of j mean smaller correlation in the xj direction. 
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Correlation Function 
Matern 

 

 

 

 

 

 Is equal to the exponential covariance function when  = ½.  

 

 Is equal to the squared exponential when    

 

 Typically,  = ½, 3/2, or 5/2, going a process that looks rough to a 
process that is fairly smooth.  

   

 Other covariances are possible:  Cauchy, polynomial functions, etc. 
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Putting it all together 
 Start with N runs of a computer code, with points {xi, yi}.  

Ideally, the N points will be a well-spaced design such as Latin 
Hypercube. 

 Define the mean function for the Gaussian process. 

 Often, zero mean or constant mean is used.  

 Define the covariance function for the Gaussian process.  

 Typically, the power-exponential function is used.   

 Estimate the parameters governing the Gaussian process, 
including β, , and any parameters of the correlation 
function R such as j. 
 Can use maximum likelihood or Bayesian methods  

 Substitute the parameters in the prediction equations and 
obtain mean and variance estimates for new points x*   
 
 

 



Parameter Estimation (MLE) 
 The observed training values represent a realization of a multivariate 

normal distribution.  

𝑓 𝒀 = (2𝜋)−
𝑁
2 ||−

1
2𝑒𝑥𝑝 −

1

2
(𝒀 − )𝑇−1(𝒀 − )   

 The basic idea of MLE is to find the particular mean vector and 
covariance matrix that define the most likely multivariate normal 
distribution to result in the observed data. 

 Take the Log Likelihood and maximize it: 

 log(𝑓 𝒀) = −
𝑁

2
log 2𝜋 −

1

2
(𝜎2𝑁|𝑹|) −

1

2𝜎2
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

 Drop the -1/2 term, and the first constant term and minimize the 
negative log-likelihood:  

 𝑁𝐿𝐿 = Nlog 𝜎2 + log 𝑅 +
1

𝜎2
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

  



Parameter Estimation (MLE) 
 Use global optimization methods to optimize the NLL  

 OR 

 Use gradient-based optimization to optimize the NLL.  The derivations have 
been worked out with respect to β, , and correlation parameters of R.  

 Conditional on fixed values of the correlation parameters, the optimal 
values for β and  are given by the generalized least squares formulation: 

𝜷 = (𝑭𝑻𝑹−𝟏𝑭)−𝟏(𝑭𝑻𝑹−𝟏𝒀)  

𝜎2 =
1

𝑁
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

 One can use an iterative method, and obtain optimal correlation 
parameters , then calculate R and substitute it into above expressions 
above for β and . 

 This optimization has been studied fairly thoroughly.  A good reference is:  

Jay Martin.  “Computational Improvements to Estimating Kriging Metamodel 
Parameters.” Journal of Mechanical Design.  Aug. 2009, Vol. 131, p. 084501:1-7. 



Bayesian parameter estimation 
 Denote all of the parameters governing the GP as:  

  = (β, , j).   

 Bayesian approach to estimate posterior distribution on hyperparameters 
:  

 

 

 Likelihood is the same as before with MLE 

 Use Markov Chain Monte Carlo (MCMC) to solve it 

 Requires thousands of evaluations of the likelihood function 

 Large amount of work done in the statistical community about priors on 
these parameters, estimation of marginal likelihoods.  

 Jeffreys-independent prior, reference priors, are often assumed 

 Need to be careful that priors are not improper 

 Reference: Paulo, Rui. Default priors for Gaussian processes. Ann. Statist. 33 
(2005), no. 2, 556--582. doi:10.1214/009053604000001264.  
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Experimental Design 

 The training set of {xi} points, i= 1…N is usually a space-filling 
design such as a Latin Hypercube design or a maxi-min LHS  

 Want the points to be well spaced 

 Don’t want highly collinear points (close together) 

 PROBLEM:  
 The prediction calculations require the inversion of the correlation 

matrix  

 Often the correlation matrix is ill-conditioned and may be numerically 
singular 

 Happens even with a few hundred points in 2-D 

 One can’t invert R to use in the prediction calculation  
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Techniques to handle ill-conditioning 
of the correlation matrix 

 Remove points in a random or structured way (“Sparsification”) 

 Often, a small “jitter” or noise term σ𝜖  is added to the diagonal 
terms of the covariance matrix to make the matrix better 
conditioned.  

  𝐶 = σ2𝑅 → 𝐶 = σ2𝑅 + σ𝜖
2𝐼,   

 

 Adding a nugget term  
 Estimate the nugget as part of the measurement error 

 Fix the measurement error and add a nugget, may have to do this 
iteratively until the nugget is big enough to make R well-conditioned 
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Techniques to handle ill-conditioning 
of the correlation matrix (cont’d) 

 Linear algebra tricks 
 Don’t take the inverse of R, take the Cholesky factorization 

 Pseudo-inverse 

 Discards small singular values 

 Pivoted Cholesky Factorization 

 discard additional copies of the information that is most duplicated 

 Decrease the maximum eigenvalue and increase the minimum 
eigenvalue 

 Gradient-enhanced kriging 

 SAND Report 2013-7022.  Efficient and Robust Gradient 
Enhanced Kriging Emulators, by Keith Dalbey.   
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Software and Resources 
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Resources 

 Websites: www.gaussianprocess.org 

 Managing Uncertainty in Computer Models (MUCM):  
 UK project headed by Prof. Tony O’Hagan, University of Sheffield 

 http://www.mucm.ac.uk/Pages/ReadingList.html 

 Books:  
 Gaussian Processes for Machine Learning, Carl Edward Rasmussen and 

Chris Williams, MIT Press, 2006. 

 Statistics for Spatial Data, Noel A. C. Cressie, Wiley, 1993. 

 The Design and Analysis of Computer Experiments.   Santner, T., B. 
Williams, and W. Notz.  Springer, 2003. 
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Software and Resources 

 Software:  
 R:   tgp (Gramacy and Lee), gptk (Kalaitzis, Lawrence, et al.),  GPfit 

MacDonald, Chipman, and Ranjan) 

 Matlab:  gpml (Rasmussen, Williams, Nickisch), GPmat (Sheffield 
Group) 

 Python:  scikit-learn.   http://scikit-learn.org/stable/ 

 Python:  GPy, gptools, pyGPs, etc. 

 C++:  https://github.com/mblum/libgp 

 MIT Group:  MUQ/GPEXP (Python) 

 Dakota/Surfpack (C++) 

 Lots of others…. 
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Example Use Cases 
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Efficient Global Optimization 
 Technique due to Jones, Schonlau, Welch 

 Build global Gaussian process approximation 
to initial sample 

 Balance global exploration (add points with 
high predicted variance) with local optimality 
(promising minima) via an “expected 
improvement function” 

 

 

 

 

 Iteratively add points that have maximized EI, 
we use a DIRECT global optimization algorithm 
to identify that point 

 Derivative-free, very efficient for low-dim. 

True fn 

GP surrogate 

Expected 

Improvement 

From Jones, Schonlau, Welch, 1998 



Efficient Global Reliability Analysis  
   (EGRA) 

• Reliability methods find “failure surface” or “limit state contour” between “safe” and 

“failure” regions, often defined as g(x)=0 

• Integral of the probability density of the inputs over the failure region is the 

probability of failure 
 

 

 

 

 

• Local reliability methods have problems with the nonsmooth, multimodal, and 

highly nonlinear failure surfaces  

• EGRA is a global reliability analysis that uses a variant of EGO 

- The expected improvement is now the expected feasibility:  penalize points 

from being away from the g(x)=0 boundary 

- Balance explore and exploit in locating the limit state (EGRA) 

- Handles nonsmooth, multi-modal, highly nonlinear response functions 
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Efficient Global Reliability Analysis 

         Gaussian process model of reliability limit state with 

10 samples       28 samples 

explore 

exploit 



Efficient Global Reliability Analysis 

Mean             Variance   Expected Feasibility 



EGRA: Benchmark performance 

CDF Comparison 

MV 

FORM 

PCE(2) LHS 

EGRA 

Rosenbrock 

Test 

+ 

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment 

Multimodal 

Test 

+ 



Bayesian Formulation 

 Generate posterior distributions on model parameters, given 
 Experimental data  

 A prior distribution on model parameters 

 A presumed probabilistic relationship between experimental data and 
model output that can be defined by a likelihood function 
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Bayesian Calibration of Computer 
Models 
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 Experimental data = Model output + error 

 

 

 If we assume error terms are independent, zero mean Gaussian random 
variables with variance 2, the likelihood is:  

 

 

 

 How do we obtain the posterior?  

 It is usually too difficult to calculate analytically 

 We use a technique called Markov Chain Monte Carlo (MCMC) 

 In MCMC, the idea is to generate a sampling density that is 
approximately equal to the posterior.  We want the sampling density 
to be the stationary distribution of a Markov chain.   
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Bayesian Calibration:  Approach 

 Take initial set of samples from simulation  

 Use LHS or space-filling design 

 Develop Gaussian process approximation of the simulation 

 Put priors on the input parameters 

 Perform Bayesian analysis using MCMC 

 Generate and analyze posterior distributions 

 NOTE:  GP surrogate adds a layer of uncertainty.  However, this is explicitly 
modeled in the revised likelihood:  

 

 

 

 

 Total uncertainty = (observation + model uncertainty) + surrogate uncertainty 
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THANK YOU!  
QUESTIONS? 
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